rḏi̯(Lemma ID 550028)
Hieroglyphic spelling: 𓂋𓏙
Persistent ID:
550028
Persistent URL:
https://thesaurus-linguae-aegyptiae.de/lemma/550028
Lemma list: Hieroglyphic/hieratic
Word class: verb (irregular)
Translation
Attestation in the TLA text corpus
3374
Attestation time frame in the TLA text corpus:
from
2686 BCE
to
324 CE
Spellings in the TLA text corpus:
Please feel free to point out any mistakes to us
𓂋𓂝 | 16× V(infl. unedited) (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 1× V\adv.inf.f ( 1 ) | 34× V\advz (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 2× V\imp.sg ( 1, 2 ) | 17× V\inf (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 13× V\ptcp.act.m.sg (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 1× V\res-3pl.m ( 1 ) | 1× V\tam.act-cnsv:stpr ( 1 ) | 17× V\tam.act:stpr (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 26× V\tam.pass (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 )
𓂋𓂝𓇋𓂋 | 5× V\tam.act-cnsv:stpr ( 1, 2, 3, 4, 5 )
𓂋𓂝𓇋𓇋𓏏𓏛 | 1× V\ptcp.pass.f.sg ( 1 )
𓂋𓂝𓇋𓇋𓏲𓏥 | 1× V\ptcp.act.m.pl ( 1 )
𓂋𓂝𓇋𓈖 | 7× V\tam.act-cnsv ( 1, 2, 3, 4, 5, 6, 7 ) | 3× V\tam.act-cnsv:stpr ( 1, 2, 3 )
𓂋𓂝𓈖 | 1× V(infl. unedited) ( 1 ) | 1× V\inf ( 1 ) | 3× V\rel.m.sg-ant ( 1, 2, 3 ) | 4× V\rel.m.sg-ant:stpr ( 1, 2, 3, 4 ) | 11× V\tam.act-ant ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 25× V\tam.act-ant:stpr (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 1× V\tam.act:stpr ( 1 )
𓂋𓂝𓎡𓄿𓀁𓏛 | 1× V\tam.act-post:stpr ( 1 )
𓂋𓂝𓏏 | 27× V(infl. unedited) (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 6× V\advz ( 1, 2, 3, 4, 5, 6 ) | 109× V\inf (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 1× V\ptcp.act.f.sg ( 1 ) | 1× V\ptcp.act.m.sg ( 1 ) | 1× V\res-3sg.m ( 1 ) | 1× V\tam ( 1 ) | 5× V\tam-pass ( 1, 2, 3, 4, 5 ) | 3× V\tam.act:stpr ( 1, 2, 3 ) | 2× V\tam.pass ( 1, 2 )
𓂋𓂝𓏏𓂋𓐍𓏛 | 1× V\tam.act-oblv:stpr ( 1 )
𓂋𓂝𓏏𓇋𓈖 | 1× V\tam.act-cnsv ( 1 )
𓂋𓂝𓏏𓇋𓋔 | 1× V\tam.act-cnsv ( 1 )
𓂋𓂝𓏏𓈖 | 1× V\rel.f.sg-ant:stpr ( 1 ) | 2× V\tam.act-ant ( 1, 2 ) | 8× V\tam.act-ant:stpr ( 1, 2, 3, 4, 5, 6, 7, 8 ) | 2× V\tam.act-ant:stpr ( 1, 2 )
𓂋𓂝𓏏𓏲 | 1× V\inf ( 1 )
𓂋𓂝𓏏𓐍𓂋 | 4× V\tam.act-oblv:stpr ( 1, 2, 3, 4 )
𓂋𓂝𓏛 | 2× V(infl. unedited) ( 1, 2 ) | 4× V\inf ( 1, 2, 3, 4 )
𓂋𓂝𓏛𓈖 | 2× V\tam.act-ant:stpr ( 1, 2 )
𓂋𓂝𓏤 | 2× V(infl. unedited) ( 1, 2 )
𓂋𓂝𓏲 | 2× V\ptcp.act.m.sg ( 1, 2 ) | 1× V\res-3pl.m ( 1 ) | 1× V\tam.act ( 1 ) | 5× V\tam.pass ( 1, 2, 3, 4, 5 )
𓂋𓂝𓏲𓈖 | 1× V\tam.act-ant:stpr ( 1 )
𓂋𓂝𓐍𓂋 | 11× V\tam.act-oblv:stpr ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 )
𓂋𓂞 | 11× V(infl. unedited) ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 2× V\adv.inf.f ( 1, 2 ) | 8× V\advz ( 1, 2, 3, 4, 5, 6, 7, 8 ) | 7× V\inf ( 1, 2, 3, 4, 5, 6, 7 ) | 1× V\ptcp.act.m.pl ( 1 ) | 6× V\ptcp.act.m.sg ( 1, 2, 3, 4, 5, 6 ) | 1× V\tam.act-ant ( 1 ) | 5× V\tam.act:stpr ( 1, 2, 3, 4, 5 ) | 3× V\tam.pass ( 1, 2, 3 )
𓂋𓂞𓂞 | 1× V(infl. unedited) ( 1 ) | 1× V\ptcp.act.m.sg ( 1 )
𓂋𓂞𓂞𓏏𓏲 | 1× V\ptcp.act.m.sg ( 1 )
𓂋𓂞𓅱 | 1× V(infl. unedited) ( 1 )
𓂋𓂞𓇋𓇋𓏏𓏥 | 1× V(infl. unedited) ( 1 )
𓂋𓂞𓇋𓈖 | 1× V\tam.act-cnsv ( 1 )
𓂋𓂞𓈖 | 5× V(infl. unedited) ( 1, 2, 3, 4, 5 ) | 1× V\rel.m.sg-ant:stpr ( 1 ) | 4× V\tam.act-ant ( 1, 2, 3, 4 ) | 3× V\tam.act-ant:stpr ( 1, 2, 3 )
𓂋𓂞𓍿 | 1× V\inf ( 1 )
𓂋𓂞𓏏 | 29× V(infl. unedited) (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 1× V(infl. unedited) ( 1 ) | 71× V\inf (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 2× V\inf:stpr ( 1, 2 )
𓂋𓂞𓏏𓈖 | 1× V\tam.act-ant:stpr ( 1 )
𓂋𓂞𓐍𓂋 | 2× V(infl. unedited) ( 1, 2 ) | 3× V\tam.act-oblv:stpr ( 1, 2, 3 )
𓂋𓂟𓈖 | 1× V\tam.act-ant:stpr ( 1 )
𓂋𓂡 | 1× V\inf ( 1 )
𓂋𓂣 | 1× V\ptcp.act.m.sg ( 1 )
𓂋𓂧𓈖 | 1× V\rel.m.sg-ant:stpr ( 1 )
𓂋𓂧𓏏 | 1× V\inf ( 1 )
𓂋𓈖 | 1× V\tam.act-ant ( 1 )
𓂋𓏏𓂝 | 40× V(infl. unedited) (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 1× V(infl. unedited) ( 1 ) | 1× V\adv.inf.f ( 1 ) | 1× V\advz ( 1 ) | 35× V\inf (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 5× V\ptcp.act.m.sg ( 1, 2, 3, 4, 5 ) | 1× V\tam.act ( 1 ) | 2× V\tam.act-ant:stpr ( 1, 2 ) | 1× V\tam.act-ant:stpr ( 1 ) | 1× V\tam.act:stpr ( 1 ) | 1× V\tam.pass ( 1 ) | 2× V\tam.pass-compl ( 1, 2 )
𓂋𓏏𓂝𓈀 | 1× V\tam.act-ant ( 1 )
𓂋𓏏𓂝𓈖 | 9× V(infl. unedited) ( 1, 2, 3, 4, 5, 6, 7, 8, 9 ) | 1× V(infl. unedited) ( 1 ) | 10× V\tam.act-ant ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) | 19× V\tam.act-ant:stpr (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 3× V\tam.act-ant:stpr ( 1, 2, 3 )
𓂋𓏏𓂝𓋔 | 1× V\tam.act-ant ( 1 )
𓂋𓏏𓂝𓐍𓂋 | 1× V(infl. unedited) ( 1 )
𓂋𓏏𓂞 | 9× V\inf ( 1, 2, 3, 4, 5, 6, 7, 8, 9 ) | 1× V\ptcp.act.m.sg ( 1 )
𓂋𓏏𓂞𓈖 | 1× V(infl. unedited) ( 1 ) | 4× V\tam.act-ant ( 1, 2, 3, 4 ) | 2× V\tam.act-ant:stpr ( 1, 2 )
𓂋𓏏𓂣 | 1× V(infl. unedited) ( 1 )
𓂋𓏏𓏙 | 1× V\inf ( 1 )
𓂋𓏏𓏙𓈖 | 1× V\tam.act-ant:stpr ( 1 )
𓂋𓏙 | 4× V\advz ( 1, 2, 3, 4 ) | 1× V\inf ( 1 ) | 7× V\tam.act ( 1, 2, 3, 4, 5, 6, 7 ) | 3× V\tam.act:stpr ( 1, 2, 3 ) | 1× V\tam.pass ( 1 )
𓂋𓏙𓈖 | 5× V(infl. unedited) ( 1, 2, 3, 4, 5 ) | 1× V\rel.m.sg-ant:stpr ( 1 ) | 1× V\tam.act ( 1 ) | 35× V\tam.act-ant (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 21× V\tam.act-ant:stpr (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 )
𓂋𓏙𓏏 | 4× V:ptcp.post-m.pl ( 1, 2, 3, 4 ) | 7× V\inf ( 1, 2, 3, 4, 5, 6, 7 ) | 1× V\tam-pass ( 1 )
𓂋𓏙𓏏𓈖 | 1× V\tam.act-ant ( 1 ) | 4× V\tam.act-ant:stpr ( 1, 2, 3, 4 )
𓂋𓏤𓂝𓈖 | 1× V\rel.m.pl-ant ( 1 )
𓂝 | 3× V(infl. unedited) ( 1, 2, 3 ) | 1× V\inf ( 1 ) | 1× V\tam.act ( 1 ) | 20× V\tam.act:stpr (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 )
𓂝
𓂝𓂝 | 1× V\rel.m.sg-ant ( 1 ) | 1× V\tam.act:stpr ( 1 ) | 1× V~ipfv.act ( 1 ) | 3× V~ipfv.act:stpr ( 1, 2, 3 ) | 3× V~ptcp.distr.act.m.pl ( 1, 2, 3 ) | 6× V~ptcp.distr.act.m.sg ( 1, 2, 3, 4, 5, 6 )
𓂝𓈖 | 1× V\tam.act-ant:stpr ( 1 )
𓂝𓋔 | 1× V\tam.act-ant:stpr ( 1 )
𓂝𓏏 | 7× V\inf ( 1, 2, 3, 4, 5, 6, 7 )
𓂝𓏏𓏤 | 1× V\inf ( 1 )
𓂝𓏲 | 1× V\tam.act:stpr ( 1 )
𓂞 | 138× V(infl. unedited) (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 2× V\advz ( 1, 2 ) | 1× V\imp.sg ( 1 ) | 18× V\inf (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 10× V\ptcp.act.m.sg ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) | 1× V\rel.m.sg ( 1 ) | 1× V\rel.m.sg:stpr ( 1 ) | 1× V\tam ( 1 ) | 1× V\tam.act ( 1 ) | 1× V\tam.act-ant:stpr ( 1 ) | 388× V\tam.act:stpr (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 3× V\tam.pass ( 1, 2, 3 ) | 5× V\tam:stpr ( 1, 2, 3, 4, 5 )
𓂞𓂞 | 15× V(infl. unedited) (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 1× V\tam.act:stpr ( 1 ) | 2× V~ipfv.act ( 1, 2 ) | 15× V~ipfv.act:stpr (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 11× V~ptcp.distr.act.m.sg ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 1× V~rel.ipfv.m.sg ( 1 )
𓂞𓂞𓅱 | 1× V\tam:stpr ( 1 )
𓂞𓂞𓇋𓇋 | 1× V(infl. unedited) ( 1 )
𓂞𓂞𓇋𓇋𓅱𓏥 | 3× V(infl. unedited) ( 1, 2, 3 )
𓂞𓂞𓏏 | 2× V(infl. unedited) ( 1, 2 ) | 1× V\tam-pass ( 1 )
𓂞𓂞𓏏𓂻 | 1× V(infl. unedited) ( 1 )
𓂞𓂞𓏏𓅱 | 1× V\tam-pass ( 1 )
𓂞𓂞𓏏𓏲 | 1× V~ipfv.act:stpr ( 1 )
𓂞𓂞𓏭𓏛 | 1× V~post.pass:stpr ( 1 )
𓂞𓂞𓏲 | 1× V~ptcp.distr.pass.m.sg ( 1 )
𓂞𓄿𓇋𓇋𓏏𓏛 | 1× V\tam.pass-compl ( 1 )
𓂞𓅱 | 1× V(unclear) ( 1 ) | 2× V\tam.act:stpr ( 1, 2 )
𓂞𓇋𓇋 | 1× V\inf ( 1 )
𓂞𓇋𓇋𓇋𓏲 | 1× V\advz ( 1 )
𓂞𓈖 | 7× V(infl. unedited) ( 1, 2, 3, 4, 5, 6, 7 ) | 1× V(infl. unedited) ( 1 ) | 1× V\tam.act-ant ( 1 ) | 15× V\tam.act-ant:stpr (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 )
𓂞𓈖
𓂞𓋔 | 1× V\tam.act-ant:stpr ( 1 )
𓂞𓏏 | 6× V(infl. unedited) ( 1, 2, 3, 4, 5, 6 ) | 1× V(unclear) ( 1 ) | 6× V\advz ( 1, 2, 3, 4, 5, 6 ) | 502× V\inf (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 2× V\inf ( 1, 2 ) | 1× V\inf:stpr ( 1 ) | 1× V\ptcp.act.f.sg ( 1 ) | 1× V\ptcp.act.m.pl ( 1 ) | 3× V\ptcp.act.m.sg ( 1, 2, 3 ) | 2× V\ptcp.act.m.sg ( 1, 2 ) | 1× V\res-3pl.m ( 1 ) | 2× V\tam-pass ( 1, 2 ) | 3× V\tam.act ( 1, 2, 3 ) | 1× V\tam.act-compl:stpr ( 1 ) | 22× V\tam.act:stpr (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 3× V\tam.act:stpr ( 1, 2, 3 ) | 1× V\tam.pass ( 1 ) | 1× V\tam:stpr ( 1 )
𓂞𓏏𓅱 | 2× V\tam-pass ( 1, 2 )
𓂞𓏏𓇋𓇋𓏛 | 1× V\inf ( 1 )
𓂞𓏏𓏏 | 1× V\tam-pass ( 1 )
𓂞𓏏𓏏𓏲 | 1× V\inf:stpr ( 1 )
𓂞𓏏𓏤 | 1× V\inf ( 1 )
𓂞𓏏𓏲 | 1× V\inf ( 1 ) | 2× V\tam-pass ( 1, 2 ) | 2× V\tam.act:stpr ( 1, 2 )
𓂞𓏏𓏹 | 1× V\tam.act:stpr ( 1 )
𓂞𓏏 | 1× V\inf ( 1 )
𓂞𓏤 | 1× V\tam.act:stpr ( 1 )
𓂞𓏲 | 1× V(infl. unedited) ( 1 ) | 7× V\tam.act ( 1, 2, 3, 4, 5, 6, 7 ) | 28× V\tam.act:stpr (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 )
𓂞 | 1× V\tam.act:stpr ( 1 )
𓂠 | 1× V\tam.act:stpr ( 1 )
𓂠𓈖 | 1× V(infl. unedited) ( 1 )
𓂡 | 20× V(infl. unedited) (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 1× V\advz ( 1 ) | 1× V\tam.act:stpr ( 1 )
𓂡𓂡 | 1× V(infl. unedited) ( 1 ) | 1× V~ipfv.act:stpr ( 1 ) | 1× V~ptcp.distr.act.m.sg ( 1 )
𓂡𓅱 | 1× V(infl. unedited) ( 1 )
𓂡𓏏 | 12× V(infl. unedited) (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 5× V\inf ( 1, 2, 3, 4, 5 )
𓂡𓏏𓏲 | 2× V(infl. unedited) ( 1, 2 )
𓂡𓏛𓏏 | 1× V(infl. unedited) ( 1 )
𓂡𓏲 | 2× V(infl. unedited) ( 1, 2 )
𓂣𓈖 | 1× V\rel.m.sg-ant ( 1 ) | 1× V\tam.act-ant ( 1 )
𓂧𓂝 | 1× V\inf ( 1 )
𓇋𓀁𓂞 | 1× V\ptcp.act.m.sg ( 1 ) | 2× V\rel.m.pl:stpr ( 1, 2 ) | 1× V\rel.m.sg:stpr ( 1 ) | 2× V\tam.act:stpr ( 1, 2 )
𓇋𓀁𓂞𓂞 | 1× V\ptcp.act.f.sg ( 1 ) | 1× V\ptcp.act.m.sg ( 1 )
𓇋𓀁𓂞𓄿𓏲𓏏 | 1× V\ptcp.act.m.sg ( 1 )
𓇋𓀁𓂞𓏏 | 3× V\ptcp.act.m.sg ( 1, 2, 3 )
𓇋𓀁𓂞𓏲 | 1× V\ptcp.act.m.sg ( 1 )
𓇋𓏲𓂞𓏏 | 1× V\rel.m.sg ( 1 )
𓇮 | 2× V\tam.act:stpr ( 1, 2 )
𓈖 | 1× V\inf ( 1 )
𓋹𓈖 | 1× V\tam.act-ant ( 1 )
𓏌𓏤 | 1× V\inf ( 1 )
𓏏𓂝 | 1× V(infl. unedited) ( 1 ) | 1× V\inf ( 1 )
𓏏𓂝𓏏 | 1× V\inf ( 1 )
𓏏𓂞 | 3× V\inf ( 1, 2, 3 ) | 1× V\ptcp.act.m.sg ( 1 ) | 1× V\tam.act:stpr ( 1 )
𓏏𓏲 | 1× V\tam.act:stpr ( 1 )
𓏙 | 10× V(infl. unedited) ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) | 3× V\advz ( 1, 2, 3 ) | 3× V\imp.sg ( 1, 2, 3 ) | 2× V\inf ( 1, 2 ) | 5× V\ptcp.act.m.sg ( 1, 2, 3, 4, 5 ) | 2× V\ptcp.pass.m.sg ( 1, 2 ) | 2× V\tam.act ( 1, 2 ) | 107× V\tam.act:stpr (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 1× V\tam.act:stpr ( 1 )
𓏙𓂝𓏏 | 1× V\inf ( 1 )
𓏙𓅱 | 1× V\tam.act:stpr ( 1 )
𓏙𓇋𓇋 | 2× V\ptcp.pass.m.sg ( 1, 2 )
𓏙𓈖 | 1× V(infl. unedited) ( 1 ) | 10× V\rel.m.sg-ant:stpr ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ) | 21× V\tam.act-ant (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 10× V\tam.act-ant:stpr ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 )
𓏙𓏏 | 1× V(infl. unedited) ( 1 ) | 1× V\advz ( 1 ) | 8× V\inf ( 1, 2, 3, 4, 5, 6, 7, 8 ) | 1× V\tam-pass ( 1 )
𓏙𓏏𓅱 | 2× V\tam-pass ( 1, 2 )
𓏙𓏙 | 2× V~ipfv.act:stpr ( 1, 2 ) | 1× V~ptcp.distr.act.m.sg ( 1 )
𓏙𓏲 | 1× V\tam.act:stpr ( 1 )
| 2× V\tam.act:stpr ( 1, 2 )
| 1× V\tam.act-ant ( 1 )
𓂞 | 1× V\tam:stpr ( 1 )
[][] | 1× V\inf ( 1 )
[]𓂝 | 1× V~ptcp.distr.act.m.sg ( 1 )
[]𓂝𓏏 | 1× V\inf ( 1 )
[]𓂝𓏏𓈖 | 1× V\tam.act-ant ( 1 ) | 1× V\tam.act-ant:stpr ( 1 )
[]𓂞 | 1× V\inf ( 1 )
[]𓂞𓏏 | 1× V\tam.act:stpr ( 1 )
[]𓇋𓅱𓏥 | 1× V(infl. unedited) ( 1 )
[]𓈖 | 5× V\tam.act-ant:stpr ( 1, 2, 3, 4, 5 )
[]𓋔 | 1× V\tam.act-ant ( 1 )
[]𓏏 | 6× V\inf ( 1, 2, 3, 4, 5, 6 ) | 1× V\tam.act:stpr ( 1 )
[]𓏏𓂝 | 1× V\inf ( 1 )
[]𓏏𓂝𓈖 | 1× V\tam.act-ant:stpr ( 1 )
[]𓏏𓂞𓈖 | 2× V\tam.act-ant ( 1, 2 )
[]𓏏𓅱𓏏 | 1× V\tam-pass ( 1 )
[]𓏙𓈖 | 1× V\rel.m.sg-ant:stpr ( 1 )
{𓂡}⟨…⟩ | 1× V\tam.act:stpr ( 1 )
⸮𓂋?⸮𓂞?⸮𓏏?⸮𓏛? | 1× V\inf ( 1 )
⸮𓂞?⸮𓏏? | 2× V\inf ( 1, 2 )
⸮𓂞?𓈖 | 1× V\rel.f.sg-ant ( 1 )
𓂋[] | 1× V(infl. unedited) ( 1 ) | 2× V\advz ( 1, 2 ) | 6× V\inf ( 1, 2, 3, 4, 5, 6 ) | 1× V\inf ( 1 ) | 1× V\ptcp.act.m.sg ( 1 ) | 2× V\tam.act-ant ( 1, 2 )
𓂋[]𓈖 | 1× V\tam.act-ant ( 1 )
𓂋[]𓏏 | 1× V\inf ( 1 )
𓂋⸮𓂝?⸮𓏏? | 1× V\inf ( 1 )
𓂋𓂝[] | 2× V\inf ( 1, 2 ) | 1× V\res-3sg.m ( 1 ) | 1× V\tam.act-ant:stpr ( 1 )
𓂋𓂝⸮𓏏? | 1× V\tam-pass ( 1 )
𓂋𓂝𓇋[] | 1× V\tam.act-cnsv ( 1 )
𓂋𓂝𓏏[] | 1× V\tam.act-ant ( 1 )
𓂋𓂝𓏏𓏛𓇋[] | 1× V\tam.act-cnsv ( 1 )
𓂋𓂝𓏛[] | 1× V\inf ( 1 )
𓂋𓂝𓏲𓐍[] | 1× V\tam.act-oblv:stpr ( 1 )
𓂋𓂞[] | 1× V\inf ( 1 )
𓂋𓏏⸮𓂞?𓈖 | 1× V\tam.act-ant:stpr ( 1 )
𓂞A71 | 1× V\advz ( 1 )
𓂞[] | 1× V\advz ( 1 ) | 12× V\inf (e.g. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ) | 1× V\ptcp.act.m.sg ( 1 )
𓂞[]𓏏𓏲 | 1× V~ipfv-pass ( 1 )
𓂡[] | 1× V\inf ( 1 )
𓇋𓀁⸮𓂞?⸮𓏏? | 1× V\ptcp.act.m.sg ( 1 )
𓏙[] | 1× V\inf ( 1 )
𓐝𓂋𓂝[] | 1× V\tam.act-ant ( 1 )
-
Wb 2, 468.12-15
- GEG § 70
Bibliography field contents
For bibliographic abbreviations that you might want to look for, see here.
Related lemmata
Related lemmata
Many lemma entries also provide information on relations to other lemmata. Types of such relations are:
- Reference relation (“substituted by / referred to from”): Revoked, obsolete, or referencing lemmata, i.e., those with the editorial status “inactive,” link to their respective substitute (and vice versa).
- Hierarchical relation (“superordinate / referring by”):
- In accordance with the widely accepted grammatical analysis that adjectives and corresponding verbal lemmata are productively related, adjectives usually provide links to the respective (superordinate) verbal lemma (and vice versa).
- Collocational lemmata entries such as jri̯ (sḫr.w) ‘to take care’ link to their superordinate kernel lemma (jri̯ ‘to make’). Likewise entries that represent contextually especially noteworthy semantics such as jri̯ (plus descendant name) ‘to engender’ link to their superordinate lemma (jri̯ ‘to make’).
- Diachronic relation (“successor / predecessor”): Historically related entries in the hieroglyphic/hieratic lemma list and the Demotic lemma list are interlinked as successors or predecessors, respectively. (still in progress.)
- Part/whole relation (“parts / part of”): Multi-word lemmata, i.e., lemma that consist of two or more words, provide links to the lemma entries for their respective parts (and vice versa). For example, the compound ḥw.t-nṯr “temple” refers to the two separate lemmata ḥw.t “mansion” and nṯr “god” (and vice versa). (still in progress.)
- Root relation (“root / root of”): Entries for basic, i.e., single-word lemmata provide references to their consonantal root (and vice versa).
For some of the relations, it is possible to see the attestations of the main lemma together with the attestations of the hierarchically linked lemmata (recursively).
External references
Related lemmata
Please cite as:
(Full citation)"rḏi̯" (Lemma ID 550028) <https://thesaurus-linguae-aegyptiae.de/lemma/550028>, edited by AV Wortschatz der ägyptischen Sprache, with contributions by Simon D. Schweitzer, Annik Wüthrich, in: Thesaurus Linguae Aegyptiae, Corpus issue 20, Web app version 2.4, 1/21/2026, ed. by Tonio Sebastian Richter & Daniel A. Werning on behalf of the Berlin-Brandenburgische Akademie der Wissenschaften and Hans-Werner Fischer-Elfert & Peter Dils on behalf of the Sächsische Akademie der Wissenschaften zu Leipzig (accessed: xx.xx.20xx)(Short citation)
https://thesaurus-linguae-aegyptiae.de/lemma/550028, in: Thesaurus Linguae Aegyptiae (accessed: xx.xx.20xx)
Comment the content of this page
Thank you for helping to improve the data! Your comment will be sent to the TLA team for evaluation. For more information, see our privacy policy.
Share this page
Note that if you use the social media buttons (e.g., X, Facebook), data will be delivered to the respective service. For details, see the privacy policies of the respective service(s).
Please feel free to point out any mistakes to us
Thank you for helping us improve our publication.
If you do not have an e-mail app installed on your device, please write an e-mail by hand, quoting the lemma ID/link, token ID/link (or sentence ID/link), type of mistake, to: tla-web@bbaw.de.